DEPARTMENT OF MATHEMATICS Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for Non- linear Problems
نویسندگان
چکیده
In this paper, some local and parallel discretizations and adaptive finite element algorithms are proposed and analyzed for nonlinear elliptic boundary value problems in both two and three dimensions. The main technique is to use a standard finite element discretization on a coarse grid to approximate low frequencies and then to apply some linearized discretization on a fine grid to correct the resulted residual (which contains mostly high frequencies) by some local/parallel procedures. The theoretical tools for analyzing these methods are some local a priori and a posteriori error estimates for finite element solutions on general shape-regular grids that are also obtained in this paper.
منابع مشابه
DEPARTMENT OF MATHEMATICS Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations
A number of new local and parallel discretization and adaptive nite element algorithms are proposed and analyzed in this paper for elliptic boundary value problems. These algorithms are motivated by the observation that, for a solution to some elliptic problems, low frequencycomponents can be approximated well by a relatively coarse grid and high frequency components can be computed on a ne gri...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملLocal and Parallel Finite Element Algorithms Based on Two-grid Discretizations
A number of new local and parallel discretization and adaptive finite element algorithms are proposed and analyzed in this paper for elliptic boundary value problems. These algorithms are motivated by the observation that, for a solution to some elliptic problems, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fin...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000